Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice.

نویسنده

  • M A Fahim
چکیده

The effect of age and endurance exercise on the physiology and morphology of neuromuscular junctions (NMJ) of gluteus maximus muscle was studied in C57BL/6NNia mice. Mice were exercised, starting at 7 or 25 mo of age, at 28 m/min for 60 min/day, 5 days/wk for 12 wk, on a rodent treadmill. Intracellular recordings of spontaneous miniature endplate potentials (MEPP) and the quantal content of endplate potentials (EPP) were recorded from NMJ of 10- and 28-mo-old control and exercised mice. Endurance exercise resulted in significant increases in MEPP amplitudes (23%), quantal content, and safety margin, and a significant decrease in MEPP frequency of young mice, with no change in resting membrane potential or membrane capacitance. Three months of endurance exercise resulted in an increase in MEPP frequency (41%) and decreases in MEPP amplitudes (15%), quantal content, and safety margin of old mice. Endurance exercise resulted in significantly larger nerve terminals (24%) in young animals, suggesting functional adaptation. Nerve terminals in exercised 28-mo-old mice were smaller than in the corresponding control mice, an indication that exercise minimized age-related nerve terminal elaboration. It is concluded that the different physiological responses of young and old gluteus maximus muscles to endurance exercise parallel their morphological responses. This suggests that the mouse NMJ undergoes a process of physiological and morphological remodeling during aging, and such plasticity could be modulated differently by endurance exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats

Background: During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction.Methods: Forty-eight male Wistar rats, aged 23–24 m...

متن کامل

Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats

Objective(s): Considering the lack of information, the effects of mild endurance exercise plus blood flow restriction (BFR) on electrocardiographic parameters, hypertrophy index, and expression of angiotensin II receptors type 1 (AT1R) and type 2 (AT2R) and apelin receptor (APJ) were assessed in hearts of old male rats.Materials and Methods: Animal were grouped as control (CTL), Sham (Sh), lowe...

متن کامل

The effect of high-intensity exercise training on gene expression of tweak and Fn14 in EDL muscle of aged and adult mice

Muscle atrophy is one of the consequences of aging and sports activities may prevent it. The aim of this study was to evaluate the effect of high intensity interval training on gene expression of Tweak and Fn14 in EDL muscle of aged C57bl/6 mice. For this purpose, 28 male C57bl/6 mice aged (n=14) and adult (n=14) were assigned in two groups of training (n=7) and control (n=7). After one-week fa...

متن کامل

Long-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats

Background During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. Methods Forty-eight male Wistar rats, aged 23-24 ...

متن کامل

Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice

Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 1997